8 research outputs found

    Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence

    Full text link
    Size-selective concentration of particles in a weakly turbulent protoplanetary nebula may be responsible for the initial collection of chondrules and other constituents into primitive body precursors. This paper presents the main elements of this process of turbulent concentration. In the terrestrial planet region, both the characteristic size and size distribution of chondrules are explained. "Fluffier" particles would be concentrated in nebula regions which were at a lower gas density and/or more intensely turbulent. The spatial distribution of concentrated particle density obeys multifractal scaling}, suggesting a close tie to the turbulent cascade process. This scaling behavior allows predictions of the probability distributions for concentration in the protoplanetary nebula to be made. Large concentration factors (>10^5) are readily obtained, implying that numerous zones of particle density significantly exceeding the gas density could exist. If most of the available solids were actually in chondrule sized particles, the ensuing particle mass density would become so large that the feedback effects on gas turbulence due to mass loading could no longer be neglected. This paper describes the process, presenting its basic elements and some implications, without including the effects of mass loading.Comment: 34 pages, 7 figures; in press for Astrophys. J; expected Jan 01 2001 issu

    Activation of adherent vascular neutrophils in the lung during acute endotoxemia

    Get PDF
    BACKGROUND: Neutrophils constitute the first line of defense against invading microorganisms. Whereas these cells readily undergo apoptosis under homeostatic conditions, their survival is prolonged during inflammatory reactions and they become biochemically and functionally activated. In the present study, we analyzed the effects of acute endotoxemia on the response of a unique subpopulation of neutrophils tightly adhered to the lung vasculature. METHODS: Rats were treated with 5 mg/kg lipopolysaccharide (i.v.) to induce acute endotoxemia. Adherent neutrophils were isolated from the lung vasculature by collagenase digestion and sequential filtering. Agarose gel electrophoresis, RT-PCR, western blotting and electrophoretic mobility shift assays were used to evaluate neutrophil activity. RESULTS: Adherent vascular neutrophils isolated from endotoxemic animals exhibited decreased apoptosis when compared to cells from control animals. This was associated with a marked increase in expression of the anti-apoptotic protein, Mcl-1. Cells isolated 0.5–2 hours after endotoxin administration were more chemotactic than cells from control animals and expressed increased tumor necrosis factor-alpha and cyclooxygenase-2 mRNA and protein, demonstrating that they are functionally activated. Endotoxin treatment of the animals also induced p38 and p44/42 mitogen activated protein kinases in the adherent lung neutrophils, as well as nuclear binding activity of the transcription factors, NF-κB and cAMP response element binding protein. CONCLUSION: These data demonstrate that adherent vascular lung neutrophils are highly responsive to endotoxin and that pathways regulating apoptosis and cellular activation are upregulated in these cells
    corecore